Supported model framework

AI Model Deployer

Product
AI Model Deployer
Product Version
1.1
Language
en-US

AI Model Deployer supports the following model frameworks:

  • TensorFlow: frozen format (.pb format), saved model (.pb format) and metagraph model (.meta format)

  • Keras: .h5 format

  • ONNX: .onnx format

  • PyTorch: .pth format

For different FW versions of TM NPU, the supported framework versions may be different. The GUI of AI Model Deployer can guide you through selecting the compatible model framework.

The framework supporting information is as follows:

Selected firmware version

Framework

Supported framework version

2.0

TensorFlow

1.x and 2.x (≤ 2.4)

Keras

≤ 2.4

ONNX

≤ 1.12

PyTorch

≤ 1.13

Note:

Limitation for models to run on TM NPU

AI Model Deployer warns if the size of the trained model which needs to be converted is over 200 MB.

The size of the converted model for TM NPU should be less than 100 MB.

TensorFlow

The following TensorFlow models are tested with AI Model Deployer and can be converted to TM NPU compatible model format.

 

Pre-trained Models

Model Parameters

TM NPU Firmware version

Type

Frozen model

Inception v2

  • Input shape: 1,224,224,3

  • Mean values: 127.5,127.5,127.5

  • Scale values: 127.5,127.5,127.5

2.0

Image classification

Frozen model

MobileNet v1

  • Input shape: 1,224,224,3

  • Mean values: 127.5,127.5,127.5

  • Scale values: 127.5,127.5,127.5

  • Input: input

  • Output: MobilenetV1/Predictions/Reshape_1

2.0

Image classification

Frozen model

SSD MobileNet v1

  • Input shape: 1,300,300,3

  • Inputs: image_tensor

  • Outputs: detection_scores,detection_boxes,num_detections

    TensorFlow custom operation

  • configuration: ssd_v2_support.json

    Custom TensorFlow object detection pipeline

  • configuration: pipeline.json

2.0

Object detection

Frozen model

SSD MobileNet v2

  • Input shape: 1,300,300,3

  • Inputs: image_tensor

  • Outputs: detection_classes,detection_scores,detection_boxes,num_detections

    TensorFlow custom operation

  • configuration: ssd_v2_support.json

    Custom TensorFlow object detection pipeline

  • configuration: pipeline.json

2.0

Object detection

Saved model

SSD MobileNet v1

  • Input shape: 1,300,300,3

  • Inputs: image_tensor

  • Outputs: detection_scores,detection_boxes,num_detections

    TensorFlow custom operation

  • configuration: ssd_v2_support.json

    Custom TensorFlow object detection pipeline

  • configuration: pipeline.json

2.0

Object detection

Saved model

SSD MobileNet v2

  • Input shape: 1,300,300,3

  • Inputs: image_tensor

  • Outputs: detection_classes,detection_scores,detection_boxes,num_detections

    TensorFlow custom operation

  • configuration: ssd_v2_support.json

    Custom TensorFlow object detection pipeline

  • configuration: pipeline.json

2.0

Object detection

Meta graph model

SSD MobileNet v1

  • Input shape: 1,300,300,3

  • Inputs: image_tensor

  • Outputs: detection_scores,detection_boxes,num_detections

    TensorFlow custom operation

  • configuration: ssd_v2_support.json

    Custom TensorFlow object detection pipeline

  • configuration: pipeline.json

2.0

Object detection

Meta graph model

SSD MobileNet v2

  • Input shape: 1,300,300,3

  • Inputs: image_tensor

  • Outputs: detection_classes,detection_scores,detection_boxes,num_detections

    TensorFlow custom operation

  • configuration: ssd_v2_support.json

    Custom TensorFlow object detection pipeline

  • configuration: pipeline.json

2.0

Object detection

TensorFlow2

The following TensorFlow2 models are tested with AI Model Deployer and can be converted to TM NPU compatible model format.

 

Pre-trained Models

Model Parameters

TM NPU Firmware version

Type

Saved model

MobileNet v1

Converted from Keras model

  • Input shape: 1,224,224,3

  • Mean values: 127.5,127.5,127.5

  • Scale values: 127.5,127.5,127.5

2.0

Image classification

Saved model

MobileNet v2

Converted from Keras model

  • Input shape: 1,224,224,3

  • Mean values: 127.5,127.5,127.5

  • Scale values: 127.5,127.5,127.5

2.0

Image classification

Saved model

MobileNet v3 small

Downloaded from Keras applications and converted to TensorFlow 2 saved model

  • "input_shape": "(1,224,224,3)"

2.0

Image classification

Saved model

MobileNet v3 large

Downloaded from Keras applications and converted to TensorFlow 2 saved model

  • "input_shape": "(1,224,224,3)"

2.0

Image classification

Keras

The following Keras models are tested with AI Model Deployer and can be converted to TM NPU compatible model format.

Pre-trained Models

Model Parameters

TM NPU Firmware version

Type

MobileNet v1

  • Input shape: 1,224,224,3

  • Mean values: 127.5,127.5,127.5

  • Scale values: 127.5,127.5,127.5

2.0

Image classification

MobileNet v2

Downloaded from Keras applications

  • Input shape: 1,224,224,3

  • Mean values: 127.5,127.5,127.5

  • Scale values: 127.5,127.5,127.5

2.0

Image classification

MobileNet v3 small

Downloaded from Keras applications

  • Input shape: 1,224,224,3

  • Mean values: 127.5,127.5,127.5

  • Scale values: 127.5,127.5,127.5

2.0

Image classification

MobileNet v3 large

Downloaded from Keras applications

  • Input shape: 1,224,224,3

  • Mean values: 127.5,127.5,127.5

  • Scale values: 127.5,127.5,127.5

2.0

Image classification

EfficientNet B0

Downloaded from Keras applications

  • Input shape: 1,224,224,3

2.0

Image classification

ONNX

The following ONNX models are tested with AI Model Deployer and can be converted to TM NPU compatible model format.

Pre-trained Models

Model Parameters

TM NPU Firmware version

Type

MobileNet V2

(Converted from PyTorch model)

  • Mean values: 123.675,116.28,103.53

  • Scale values: 58.395,57.12,57.375

2.0

Image classification

YOLO v2 tiny

(Converted from Keras model)

  • Input shape: 1,3,416,416

  • Mean values: 123.675,116.28,103.53

2.0

Object detection

PyTorch

The following PyTorch models are tested with AI Model Deployer and can be converted to TM NPU compatible model format.

Pre-trained Models

Model Parameters

TM NPU Firmware version

Type

MobileNet V2

  • Input shape: 1,3,224,224

  • Mean values: 123.675,116.28,103.53

  • Scale values: 58.395,57.12,57.375

2.0

Image classification